Loading…
TORSION OF ABELIAN VARIETIES OVER LARGE ALGEBRAIC EXTENSIONS OF
Let $K$ be a finitely generated extension of $\mathbb{Q}$ , and let $A$ be a nonzero abelian variety over $K$ . Let $\tilde{K}$ be the algebraic closure of $K$ , and let $\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$ be the absolute Galois group of $K$ equipped with its Haar measure. For each $\unicode[STI...
Saved in:
Published in: | Nagoya mathematical journal 2019-06, Vol.234, p.46-86 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
$K$
be a finitely generated extension of
$\mathbb{Q}$
, and let
$A$
be a nonzero abelian variety over
$K$
. Let
$\tilde{K}$
be the algebraic closure of
$K$
, and let
$\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$
be the absolute Galois group of
$K$
equipped with its Haar measure. For each
$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$
, let
$\tilde{K}(\unicode[STIX]{x1D70E})$
be the fixed field of
$\unicode[STIX]{x1D70E}$
in
$\tilde{K}$
. We prove that for almost all
$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$
, there exist infinitely many prime numbers
$l$
such that
$A$
has a nonzero
$\tilde{K}(\unicode[STIX]{x1D70E})$
-rational point of order
$l$
. This completes the proof of a conjecture of Geyer–Jarden from 1978 in characteristic 0. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/nmj.2017.33 |