Loading…
Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves
In this paper we highlight that extreme events such as freak waves are a transient phenomenon in keeping with the old fisherman tale that these extreme events seem to appear out of nowhere. Janssen (J. Phys. Oceanogr., vol. 33, 2003, pp. 863–884) obtained an evolution equation for the ensemble avera...
Saved in:
Published in: | Journal of fluid mechanics 2019-01, Vol.859, p.790-818 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we highlight that extreme events such as freak waves are a transient phenomenon in keeping with the old fisherman tale that these extreme events seem to appear out of nowhere. Janssen (J. Phys. Oceanogr., vol. 33, 2003, pp. 863–884) obtained an evolution equation for the ensemble average of the excess kurtosis, which is a measure for the deviation from normality and an indicator for nonlinear focusing resulting in extreme events. In the limit of a narrow-band wave train, whose dynamics is governed by the two-dimensional nonlinear Schrödinger (NLS) equation, the excess kurtosis is under certain conditions seen to grow to a maximum after which it decays to zero for large times. This follows from a numerical solution of the problem and also from an analytical solution presented by Fedele (J. Fluid Mech., vol. 782, 2015, pp. 25–36). The analytical solution is not explicit because it involves an integral from initial time to actual time. We therefore study a number of properties of the integral expression in order to better understand some interesting features of the time-dependent excess kurtosis and the generation of extreme events. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2018.844 |