Loading…
Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation
A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of th...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2019-04, Vol.77 (8), p.2086-2095 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of the mDWW equation in the truncated Painlevé series. Rational solutions are then computed by searching for positive quadratic function solutions. A regular nonsingular rational solution can describe a lump in this model. By combining quadratic functions with exponential functions, some novel interaction solutions are founded, including interaction solutions between a lump and a one-kink soliton, a bi-lump and a one-stripe soliton, and a bi-lump and a two-stripe soliton. Concrete lumps and their interaction solutions are illustrated by 3d-plots and contour plots. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2018.12.010 |