Loading…

Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation

A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of th...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2019-04, Vol.77 (8), p.2086-2095
Main Authors: Ren, Bo, Ma, Wen-Xiu, Yu, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3
cites cdi_FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3
container_end_page 2095
container_issue 8
container_start_page 2086
container_title Computers & mathematics with applications (1987)
container_volume 77
creator Ren, Bo
Ma, Wen-Xiu
Yu, Jun
description A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of the mDWW equation in the truncated Painlevé series. Rational solutions are then computed by searching for positive quadratic function solutions. A regular nonsingular rational solution can describe a lump in this model. By combining quadratic functions with exponential functions, some novel interaction solutions are founded, including interaction solutions between a lump and a one-kink soliton, a bi-lump and a one-stripe soliton, and a bi-lump and a two-stripe soliton. Concrete lumps and their interaction solutions are illustrated by 3d-plots and contour plots.
doi_str_mv 10.1016/j.camwa.2018.12.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210836034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122118307028</els_id><sourcerecordid>2210836034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8FL4q05qNNugcPsvgFC4J6DzGZYMq22U3aXfz3ptaDJy8zw8y87wwPQucEFwQTftMUWrV7VVBM6oLQAhN8gGakFiwXnNeHaIbrRZ0TSskxOomxwRiXjOIZiq-qd75T6yz69TCWMVOdyfpPcCFzXQ9B6bH9Z-7tOM4u6TW5yo1roYuTReuNsw5MZlzcQIhuB9leJYsUUwnb4efYKTqyah3h7DfP0dvD_fvyKV-9PD4v71a5ZoL3OeXaCMoqa0sQCwVcKyYE11oJgSsGgipLVWkMr2jNdS2qhWIWU60_FlyzObqYXDfBbweIvWz8ENKbUSYMuGYcszJtsWlLBx9jACs3wbUqfEmC5chWNvKHrRzZSkJlYptUt5MK0vs7B0FG7aDTYFwA3Uvj3b_6bwEChUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210836034</pqid></control><display><type>article</type><title>Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ren, Bo ; Ma, Wen-Xiu ; Yu, Jun</creator><creatorcontrib>Ren, Bo ; Ma, Wen-Xiu ; Yu, Jun</creatorcontrib><description>A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of the mDWW equation in the truncated Painlevé series. Rational solutions are then computed by searching for positive quadratic function solutions. A regular nonsingular rational solution can describe a lump in this model. By combining quadratic functions with exponential functions, some novel interaction solutions are founded, including interaction solutions between a lump and a one-kink soliton, a bi-lump and a one-stripe soliton, and a bi-lump and a two-stripe soliton. Concrete lumps and their interaction solutions are illustrated by 3d-plots and contour plots.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.12.010</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exponential functions ; Interaction solution ; Lump solution ; Modified dispersive water wave equation ; Quadratic equations ; Quartic–linear form ; Water waves ; Wave dispersion ; Wave equations</subject><ispartof>Computers &amp; mathematics with applications (1987), 2019-04, Vol.77 (8), p.2086-2095</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3</citedby><cites>FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3</cites><orcidid>0000-0001-5309-1493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ren, Bo</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><title>Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of the mDWW equation in the truncated Painlevé series. Rational solutions are then computed by searching for positive quadratic function solutions. A regular nonsingular rational solution can describe a lump in this model. By combining quadratic functions with exponential functions, some novel interaction solutions are founded, including interaction solutions between a lump and a one-kink soliton, a bi-lump and a one-stripe soliton, and a bi-lump and a two-stripe soliton. Concrete lumps and their interaction solutions are illustrated by 3d-plots and contour plots.</description><subject>Exponential functions</subject><subject>Interaction solution</subject><subject>Lump solution</subject><subject>Modified dispersive water wave equation</subject><subject>Quadratic equations</subject><subject>Quartic–linear form</subject><subject>Water waves</subject><subject>Wave dispersion</subject><subject>Wave equations</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8FL4q05qNNugcPsvgFC4J6DzGZYMq22U3aXfz3ptaDJy8zw8y87wwPQucEFwQTftMUWrV7VVBM6oLQAhN8gGakFiwXnNeHaIbrRZ0TSskxOomxwRiXjOIZiq-qd75T6yz69TCWMVOdyfpPcCFzXQ9B6bH9Z-7tOM4u6TW5yo1roYuTReuNsw5MZlzcQIhuB9leJYsUUwnb4efYKTqyah3h7DfP0dvD_fvyKV-9PD4v71a5ZoL3OeXaCMoqa0sQCwVcKyYE11oJgSsGgipLVWkMr2jNdS2qhWIWU60_FlyzObqYXDfBbweIvWz8ENKbUSYMuGYcszJtsWlLBx9jACs3wbUqfEmC5chWNvKHrRzZSkJlYptUt5MK0vs7B0FG7aDTYFwA3Uvj3b_6bwEChUQ</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Ren, Bo</creator><creator>Ma, Wen-Xiu</creator><creator>Yu, Jun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid></search><sort><creationdate>20190415</creationdate><title>Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation</title><author>Ren, Bo ; Ma, Wen-Xiu ; Yu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Exponential functions</topic><topic>Interaction solution</topic><topic>Lump solution</topic><topic>Modified dispersive water wave equation</topic><topic>Quadratic equations</topic><topic>Quartic–linear form</topic><topic>Water waves</topic><topic>Wave dispersion</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Bo</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Bo</au><au>Ma, Wen-Xiu</au><au>Yu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>77</volume><issue>8</issue><spage>2086</spage><epage>2095</epage><pages>2086-2095</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A bilinear form for the modified dispersive water wave (mDWW) equation is presented by the truncated Painlevé series, which does not lead to lump solutions. In order to get lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed by selecting a suitable seed solution of the mDWW equation in the truncated Painlevé series. Rational solutions are then computed by searching for positive quadratic function solutions. A regular nonsingular rational solution can describe a lump in this model. By combining quadratic functions with exponential functions, some novel interaction solutions are founded, including interaction solutions between a lump and a one-kink soliton, a bi-lump and a one-stripe soliton, and a bi-lump and a two-stripe soliton. Concrete lumps and their interaction solutions are illustrated by 3d-plots and contour plots.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.12.010</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2019-04, Vol.77 (8), p.2086-2095
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2210836034
source ScienceDirect Freedom Collection 2022-2024
subjects Exponential functions
Interaction solution
Lump solution
Modified dispersive water wave equation
Quadratic equations
Quartic–linear form
Water waves
Wave dispersion
Wave equations
title Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20solutions%20and%20their%20interaction%20solutions%20of%20the%20(2+1)-dimensional%20modified%20dispersive%20water%20wave%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Ren,%20Bo&rft.date=2019-04-15&rft.volume=77&rft.issue=8&rft.spage=2086&rft.epage=2095&rft.pages=2086-2095&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.12.010&rft_dat=%3Cproquest_cross%3E2210836034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-26cd7235ff4e79ae6ca3776cca77053e72af2a4dd65286c8759a3f02ccb96c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2210836034&rft_id=info:pmid/&rfr_iscdi=true