Loading…
The Impact of Natural Variation of OH Radical Demand of Drinking Water Sources on the Optimum Operation of the UV/H2O2 Process
Hydroxyl radical (•OH) water demand is a key parameter which impacts the design and operation of UV/H2O2 process for water treatment. Long-term monitoring of the •OH water demand in water sources used for drinking water production indicated significant seasonal variations of this parameter (1.59 × 1...
Saved in:
Published in: | Environmental science & technology 2019-03, Vol.53 (6), p.3177-3186 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydroxyl radical (•OH) water demand is a key parameter which impacts the design and operation of UV/H2O2 process for water treatment. Long-term monitoring of the •OH water demand in water sources used for drinking water production indicated significant seasonal variations of this parameter (1.59 × 104 to 4.98 × 104 s–1), which coincided with the occurrence of algal blooming events. Pilot-scale tests at a drinking water treatment plant confirmed that the UV/H2O2 process performance for contaminant removal is predictable when the •OH water demand is accurately determined through a validated experimental method. A predictive tool was developed to identify the optimum operating conditions of the UV system with the UV/H2O2 process and it was used to demonstrate the significant impact of seasonal variations of •OH water demand on the operating costs. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.8b05686 |