Loading…
Parallelized Linear Classification with Volumetric Chemical Perceptrons
In this work, we introduce a new type of linear classifier that is implemented in a chemical form. We propose a novel encoding technique which simultaneously represents multiple datasets in an array of microliter-scale chemical mixtures. Parallel computations on these datasets are performed as robot...
Saved in:
Published in: | arXiv.org 2018-10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we introduce a new type of linear classifier that is implemented in a chemical form. We propose a novel encoding technique which simultaneously represents multiple datasets in an array of microliter-scale chemical mixtures. Parallel computations on these datasets are performed as robotic liquid handling sequences, whose outputs are analyzed by high-performance liquid chromatography. As a proof of concept, we chemically encode several MNIST images of handwritten digits and demonstrate successful chemical-domain classification of the digits using volumetric perceptrons. We additionally quantify the performance of our method with a larger dataset of binary vectors and compare the experimental measurements against predicted results. Paired with appropriate chemical analysis tools, our approach can work on increasingly parallel datasets. We anticipate that related approaches will be scalable to multilayer neural networks and other more complex algorithms. Much like recent demonstrations of archival data storage in DNA, this work blurs the line between chemical and electrical information systems, and offers early insight into the computational efficiency and massive parallelism which may come with computing in chemical domains. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1810.05214 |