Loading…

Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process

Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2019-07, Vol.247, p.315-323
Main Authors: Jia, Xinfeng, Qu, Tailai, Chen, Haidong, Chen, Zhangxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.
ISSN:0016-2361
1873-7153
DOI:10.1016/j.fuel.2019.03.022