Loading…
Tempered particle filtering
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t−1 particle values into time t values. In the widely-used bootstrap particle filter, this distribution is generated by the state-transition equation. While straightforw...
Saved in:
Published in: | Journal of econometrics 2019-05, Vol.210 (1), p.26-44 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t−1 particle values into time t values. In the widely-used bootstrap particle filter, this distribution is generated by the state-transition equation. While straightforward to implement, the practical performance is often poor. We develop a self-tuning particle filter in which the proposal distribution is constructed adaptively through a sequence of Monte Carlo steps. Intuitively, we start from a measurement error distribution with an inflated variance, and then gradually reduce the variance to its nominal level in a sequence of tempering steps. We show that the filter generates an unbiased and consistent approximation of the likelihood function. Holding the run time fixed, our filter is substantially more accurate in two DSGE model applications than the bootstrap particle filter. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2018.11.003 |