Loading…
Reinforcement Learning in Non-Stationary Environments
Reinforcement learning (RL) methods learn optimal decisions in the presence of a stationary environment. However, the stationary assumption on the environment is very restrictive. In many real world problems like traffic signal control, robotic applications, one often encounters situations with non-...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reinforcement learning (RL) methods learn optimal decisions in the presence of a stationary environment. However, the stationary assumption on the environment is very restrictive. In many real world problems like traffic signal control, robotic applications, one often encounters situations with non-stationary environments and in these scenarios, RL methods yield sub-optimal decisions. In this paper, we thus consider the problem of developing RL methods that obtain optimal decisions in a non-stationary environment. The goal of this problem is to maximize the long-term discounted reward achieved when the underlying model of the environment changes over time. To achieve this, we first adapt a change point algorithm to detect change in the statistics of the environment and then develop an RL algorithm that maximizes the long-run reward accrued. We illustrate that our change point method detects change in the model of the environment effectively and thus facilitates the RL algorithm in maximizing the long-run reward. We further validate the effectiveness of the proposed solution on non-stationary random Markov decision processes, a sensor energy management problem and a traffic signal control problem. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1905.03970 |