Loading…
On the Bessel–Wright Transform
In the present paper, we consider a class of second-order singular differential operators which generalize the well-known Bessel differential operator. The associated eigenfunctions are the Bessel–Wright functions. These functions can be obtained by the action of the Riemann–Liouville operator on th...
Saved in:
Published in: | Analysis mathematica (Budapest) 2019-06, Vol.45 (2), p.291-309 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, we consider a class of second-order singular differential operators which generalize the well-known Bessel differential operator. The associated eigenfunctions are the Bessel–Wright functions. These functions can be obtained by the action of the Riemann–Liouville operator on the normalized Bessel functions. We introduce a Bessel–Wright transform with Bessel–Wright functions as kernel which is connected to the classical Bessel–Fourier transform via the dual of the Riemann–Liouville operator. The Bessel–Wright transform leaves invariant the Schwartz space and sends the set of functions indefinitely differentiable with compact support into the Paley–Wiener space. We conclude the paper by proving two variants of the inversion formulas. |
---|---|
ISSN: | 0133-3852 1588-273X |
DOI: | 10.1007/s10476-018-0659-1 |