Loading…

Synergy between 3'-azido-3'-deoxythymidine and paclitaxel in human pharynx FaDu cells

We recently demonstrated simultaneous targeting of telomere and telomerase as a novel cancer therapeutic approach, and that telomerase inhibitors such as 3'-azido-3'-deoxythymidine (AZT) significantly enhanced the antitumor activity of paclitaxel, which causes telomere erosion, in telomera...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical research 2003-07, Vol.20 (7), p.957-961
Main Authors: JOHNSTON, Jeffrey S, JOHNSON, Andrew, YUEBO GAN, WIENTJES, M. Guillaume, AU, Jessie L.-S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We recently demonstrated simultaneous targeting of telomere and telomerase as a novel cancer therapeutic approach, and that telomerase inhibitors such as 3'-azido-3'-deoxythymidine (AZT) significantly enhanced the antitumor activity of paclitaxel, which causes telomere erosion, in telomerase-positive human pharynx FaDu tumors in vitro and in vivo. The present study evaluated the synergy between AZT and paclitaxel to identify optimal combinations for future clinical evaluation. FaDu cells were incubated with or without AZT for 24 h and then treated with AZT with or without paclitaxel for an additional 48 h. Under these conditions, single agent paclitaxel produced a 60% maximum reduction of cell number (IC50) was 7.3 nM), and single agent AZT produced a 97% reduction (IC50 was 5.6 microM). Synergy was evaluated using fixed-concentration and fixed-ratio methods, and data were analyzed by the combination index method. The results indicate a concentration-dependent synergy between the two drugs; the synergy was higher for combinations containing greater paclitaxel-to-AZT concentration ratios and increased with the level of drug effect. For example, in combinations containing 1 microM AZT, synergy was 1.3-fold at the 20% effect level and 3.1-fold at the 60% effect level. Because the major antitumor activity, determined by comparing the posttreatment cell number to the pretreatment cell number, was antiproliferation at the 20% effect level and cell kill at the 60% effect level, our results suggest that AZT mainly enhances the cell kill effect of paclitaxel. In summary, the present study demonstrates a synergistic interaction between paclitaxel and AZT and supports a combination using a low and nontoxic AZT dose in combination with a therapeutically active dose of paclitaxel.
ISSN:0724-8741
1573-904X
DOI:10.1023/A:1024431218327