Loading…
Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning
Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with...
Saved in:
Published in: | Denki kagaku oyobi kōgyō butsuri kagaku 2019/05/05, Vol.87(3), pp.148-155 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling. |
---|---|
ISSN: | 1344-3542 2186-2451 |
DOI: | 10.5796/electrochemistry.18-00095 |