Loading…
Improving the performance of a passive battery thermal management system based on PCM using lateral fins
Phase-change materials (PCMs) combine the latent and sensible heat adsorption capabilities which makes them promising candidates in a wide range of heat transfer applications such as battery thermal management systems (BTMSs) in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and f...
Saved in:
Published in: | Heat and mass transfer 2019-06, Vol.55 (6), p.1753-1767 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phase-change materials (PCMs) combine the latent and sensible heat adsorption capabilities which makes them promising candidates in a wide range of heat transfer applications such as battery thermal management systems (BTMSs) in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). PCM must preserve the battery cells in the desired temperature range. However, pure PCMs face some challenges due to their low thermal conductivities. To mitigate this issue, one possible solution is employing fins to enhance the heat transfer across the PCM. Since the PCM melting is affected by buoyancy forces, alignment of employed fins may have an essential role in the performance of BTMSs. In the current investigation, six different BTMSs using PCM with dissimilar fin alignments are simulated and evaluated. The time evolution of liquid fraction contours are depicted for simulated cases. The results indicate that the BTMS employing horizontal fins provides the best cooling effect with the largest melt fraction after a prescribed period of time. Besides, the results demonstrate that the breaking manner of solid PCM can be greatly affected by the alignment of fins. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-018-02555-0 |