Loading…
Dissipative and Non-Dissipative Evolutionary Quasi-Variational Inequalities with Gradient Constraints
Evolutionary quasi-variational inequality (QVI) problems of dissipative and non-dissipative nature with pointwise constraints on the gradient are studied. A semi-discretization in time is employed for the study of the problems and the derivation of a numerical solution scheme. Convergence of the dis...
Saved in:
Published in: | Set-valued and variational analysis 2019-06, Vol.27 (2), p.433-468 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Evolutionary quasi-variational inequality (QVI) problems of dissipative and non-dissipative nature with pointwise constraints on the gradient are studied. A semi-discretization in time is employed for the study of the problems and the derivation of a numerical solution scheme. Convergence of the discretization procedure is proven and properties of the original infinite dimensional problem, such as existence, extra regularity and non-decrease in time, are derived. The proposed numerical solver reduces to a finite number of gradient-constrained convex optimization problems which can be solved rather efficiently. The paper ends with a report on numerical tests obtained by a variable splitting algorithm involving different nonlinearities and types of constraints. |
---|---|
ISSN: | 1877-0533 1877-0541 |
DOI: | 10.1007/s11228-018-0489-0 |