Loading…
Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel
The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown th...
Saved in:
Published in: | Functional analysis and its applications 2019, Vol.53 (1), p.23-36 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth
M
-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction. |
---|---|
ISSN: | 0016-2663 1573-8485 |
DOI: | 10.1007/s10688-019-0246-7 |