Loading…

Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel

The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown th...

Full description

Saved in:
Bibliographic Details
Published in:Functional analysis and its applications 2019, Vol.53 (1), p.23-36
Main Authors: Ilina, A. V., Krichever, I. M., Nekrasov, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683
cites cdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683
container_end_page 36
container_issue 1
container_start_page 23
container_title Functional analysis and its applications
container_volume 53
creator Ilina, A. V.
Krichever, I. M.
Nekrasov, N. A.
description The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.
doi_str_mv 10.1007/s10688-019-0246-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233418852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233418852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</originalsourceid><addsrcrecordid>eNp1kMFKw0AURQdRsFY_wN2A69H3MsnMZCm1aqFQ0boeJslLTEmTOpMq_TF_wB8zpYIrV3dz7oV7GLtEuEYAfRMQlDECMBUQxUroIzbCREthYpMcsxEAKhEpJU_ZWQgrADAa1Yg9Lz87cVevqQ1117qGP5Gvu6LO-Uv-5r-_irqtyPPFhrzrOx_4rO2p8i5riLueu5ZPW_LVjk_ritqGPqg5ZyelawJd_OaYvd5Pl5NHMV88zCa3c5FLVL3IETMyJk1LnRcIcawJEiKdoXPKSQ0FqaIsVRonMpNKFZCmA1mQKTPllJFjdnXY3fjufUuht6tu64cPwUaRlDEak0QDhQcq910Inkq78fXa-Z1FsHt19qDODursXp3VQyc6dMLA7v__Lf9f-gExD3Jx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233418852</pqid></control><display><type>article</type><title>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</title><source>Springer Nature</source><creator>Ilina, A. V. ; Krichever, I. M. ; Nekrasov, N. A.</creator><creatorcontrib>Ilina, A. V. ; Krichever, I. M. ; Nekrasov, N. A.</creatorcontrib><description>The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-019-0246-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Deformation ; Energy levels ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Periodic functions ; Schrodinger equation</subject><ispartof>Functional analysis and its applications, 2019, Vol.53 (1), p.23-36</ispartof><rights>Springer Science+Business Media, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</citedby><cites>FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ilina, A. V.</creatorcontrib><creatorcontrib>Krichever, I. M.</creatorcontrib><creatorcontrib>Nekrasov, N. A.</creatorcontrib><title>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.</description><subject>Analysis</subject><subject>Deformation</subject><subject>Energy levels</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Periodic functions</subject><subject>Schrodinger equation</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AURQdRsFY_wN2A69H3MsnMZCm1aqFQ0boeJslLTEmTOpMq_TF_wB8zpYIrV3dz7oV7GLtEuEYAfRMQlDECMBUQxUroIzbCREthYpMcsxEAKhEpJU_ZWQgrADAa1Yg9Lz87cVevqQ1117qGP5Gvu6LO-Uv-5r-_irqtyPPFhrzrOx_4rO2p8i5riLueu5ZPW_LVjk_ritqGPqg5ZyelawJd_OaYvd5Pl5NHMV88zCa3c5FLVL3IETMyJk1LnRcIcawJEiKdoXPKSQ0FqaIsVRonMpNKFZCmA1mQKTPllJFjdnXY3fjufUuht6tu64cPwUaRlDEak0QDhQcq910Inkq78fXa-Z1FsHt19qDODursXp3VQyc6dMLA7v__Lf9f-gExD3Jx</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ilina, A. V.</creator><creator>Krichever, I. M.</creator><creator>Nekrasov, N. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</title><author>Ilina, A. V. ; Krichever, I. M. ; Nekrasov, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Deformation</topic><topic>Energy levels</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Periodic functions</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilina, A. V.</creatorcontrib><creatorcontrib>Krichever, I. M.</creatorcontrib><creatorcontrib>Nekrasov, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilina, A. V.</au><au>Krichever, I. M.</au><au>Nekrasov, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2019</date><risdate>2019</risdate><volume>53</volume><issue>1</issue><spage>23</spage><epage>36</epage><pages>23-36</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10688-019-0246-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2663
ispartof Functional analysis and its applications, 2019, Vol.53 (1), p.23-36
issn 0016-2663
1573-8485
language eng
recordid cdi_proquest_journals_2233418852
source Springer Nature
subjects Analysis
Deformation
Energy levels
Functional Analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Periodic functions
Schrodinger equation
title Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Periodic%20Schr%C3%B6dinger%20Operators%20Integrable%20at%20an%20Energy%20Eigenlevel&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Ilina,%20A.%20V.&rft.date=2019&rft.volume=53&rft.issue=1&rft.spage=23&rft.epage=36&rft.pages=23-36&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-019-0246-7&rft_dat=%3Cproquest_cross%3E2233418852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233418852&rft_id=info:pmid/&rfr_iscdi=true