Loading…
Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel
The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve. Moreover, it is shown th...
Saved in:
Published in: | Functional analysis and its applications 2019, Vol.53 (1), p.23-36 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683 |
container_end_page | 36 |
container_issue | 1 |
container_start_page | 23 |
container_title | Functional analysis and its applications |
container_volume | 53 |
creator | Ilina, A. V. Krichever, I. M. Nekrasov, N. A. |
description | The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth
M
-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction. |
doi_str_mv | 10.1007/s10688-019-0246-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233418852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233418852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</originalsourceid><addsrcrecordid>eNp1kMFKw0AURQdRsFY_wN2A69H3MsnMZCm1aqFQ0boeJslLTEmTOpMq_TF_wB8zpYIrV3dz7oV7GLtEuEYAfRMQlDECMBUQxUroIzbCREthYpMcsxEAKhEpJU_ZWQgrADAa1Yg9Lz87cVevqQ1117qGP5Gvu6LO-Uv-5r-_irqtyPPFhrzrOx_4rO2p8i5riLueu5ZPW_LVjk_ritqGPqg5ZyelawJd_OaYvd5Pl5NHMV88zCa3c5FLVL3IETMyJk1LnRcIcawJEiKdoXPKSQ0FqaIsVRonMpNKFZCmA1mQKTPllJFjdnXY3fjufUuht6tu64cPwUaRlDEak0QDhQcq910Inkq78fXa-Z1FsHt19qDODursXp3VQyc6dMLA7v__Lf9f-gExD3Jx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233418852</pqid></control><display><type>article</type><title>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</title><source>Springer Nature</source><creator>Ilina, A. V. ; Krichever, I. M. ; Nekrasov, N. A.</creator><creatorcontrib>Ilina, A. V. ; Krichever, I. M. ; Nekrasov, N. A.</creatorcontrib><description>The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth
M
-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-019-0246-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Deformation ; Energy levels ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Periodic functions ; Schrodinger equation</subject><ispartof>Functional analysis and its applications, 2019, Vol.53 (1), p.23-36</ispartof><rights>Springer Science+Business Media, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</citedby><cites>FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ilina, A. V.</creatorcontrib><creatorcontrib>Krichever, I. M.</creatorcontrib><creatorcontrib>Nekrasov, N. A.</creatorcontrib><title>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth
M
-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.</description><subject>Analysis</subject><subject>Deformation</subject><subject>Energy levels</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Periodic functions</subject><subject>Schrodinger equation</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AURQdRsFY_wN2A69H3MsnMZCm1aqFQ0boeJslLTEmTOpMq_TF_wB8zpYIrV3dz7oV7GLtEuEYAfRMQlDECMBUQxUroIzbCREthYpMcsxEAKhEpJU_ZWQgrADAa1Yg9Lz87cVevqQ1117qGP5Gvu6LO-Uv-5r-_irqtyPPFhrzrOx_4rO2p8i5riLueu5ZPW_LVjk_ritqGPqg5ZyelawJd_OaYvd5Pl5NHMV88zCa3c5FLVL3IETMyJk1LnRcIcawJEiKdoXPKSQ0FqaIsVRonMpNKFZCmA1mQKTPllJFjdnXY3fjufUuht6tu64cPwUaRlDEak0QDhQcq910Inkq78fXa-Z1FsHt19qDODursXp3VQyc6dMLA7v__Lf9f-gExD3Jx</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ilina, A. V.</creator><creator>Krichever, I. M.</creator><creator>Nekrasov, N. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</title><author>Ilina, A. V. ; Krichever, I. M. ; Nekrasov, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Deformation</topic><topic>Energy levels</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Periodic functions</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilina, A. V.</creatorcontrib><creatorcontrib>Krichever, I. M.</creatorcontrib><creatorcontrib>Nekrasov, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilina, A. V.</au><au>Krichever, I. M.</au><au>Nekrasov, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2019</date><risdate>2019</risdate><volume>53</volume><issue>1</issue><spage>23</spage><epage>36</epage><pages>23-36</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth
M
-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10688-019-0246-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2663 |
ispartof | Functional analysis and its applications, 2019, Vol.53 (1), p.23-36 |
issn | 0016-2663 1573-8485 |
language | eng |
recordid | cdi_proquest_journals_2233418852 |
source | Springer Nature |
subjects | Analysis Deformation Energy levels Functional Analysis Mathematics Mathematics and Statistics Operators (mathematics) Periodic functions Schrodinger equation |
title | Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Periodic%20Schr%C3%B6dinger%20Operators%20Integrable%20at%20an%20Energy%20Eigenlevel&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Ilina,%20A.%20V.&rft.date=2019&rft.volume=53&rft.issue=1&rft.spage=23&rft.epage=36&rft.pages=23-36&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-019-0246-7&rft_dat=%3Cproquest_cross%3E2233418852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c11be8899f7cd10447e05ee7b1aa6a370de6dff69453b366d0997cdde8fb6a683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233418852&rft_id=info:pmid/&rfr_iscdi=true |