Loading…

On the Observability of the Time-Variable Lithospheric Signal in Satellite Magnetic Data

The lithospheric magnetic field, which is one of the main objectives of ESA’s mission Swarm, is slowly varying in time due to an induced component. This variation is small (usually it is omitted in the lithospheric modelling) but recent advances in processing strategies and still-growing amount of s...

Full description

Saved in:
Bibliographic Details
Published in:Surveys in geophysics 2019-09, Vol.40 (5), p.1229-1243
Main Authors: Sebera, Josef, Haagmans, Roger, Bakyiev, Eldar, Bezděk, Aleš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The lithospheric magnetic field, which is one of the main objectives of ESA’s mission Swarm, is slowly varying in time due to an induced component. This variation is small (usually it is omitted in the lithospheric modelling) but recent advances in processing strategies and still-growing amount of satellite data open questions whether such an effect should be considered in the development of the lithospheric models—when using data from missions like CHAMP and Swarm. This effect can now be estimated over a period of 17 years (since the launch of CHAMP), and it is shown how the satellite measurements (over the observable part of the spectrum) can be referenced to one common epoch. For this purpose, we first inverted the magnetic field vector from CHAOS-6 over degrees 21–120, after subtraction of a remanent model, to a vertically integrated susceptibility map. Using this susceptibility distribution and taking into account the evolving core fields from the CHAOS-6 model, the time-varying lithospheric signal is computed. The results depend on the time span and the altitude considered, e.g., an altitude of 400 km and a span of 17 years can produce more than 0.5 nT variations resulting in a peak-to-peak value of nearly 1 nT. The vertically integrated quantities appear to be a useful choice for parameterising lithospheric time variations, also for providing data corrections at the satellite altitude. The effect of the choice of the core field, which enters the inversion, on the lithospheric time variation is also studied—this effect is found less important even for core fields 20 years apart.
ISSN:0169-3298
1573-0956
DOI:10.1007/s10712-019-09546-8