Loading…

On Application of Gaussian Functions for Numerical Solution of Optimal Control Problems

It is proved that the linear combinations of shifts and contractions of the Gaussian function can be used for an arbitrarily accurate approximation in the space of continuous functions of one variable on any fixed intervals. On the example of the soft lunar landing problem, a method for the numerica...

Full description

Saved in:
Bibliographic Details
Published in:Automation and remote control 2019-06, Vol.80 (6), p.1026-1040
Main Author: Chernov, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is proved that the linear combinations of shifts and contractions of the Gaussian function can be used for an arbitrarily accurate approximation in the space of continuous functions of one variable on any fixed intervals. On the example of the soft lunar landing problem, a method for the numerical solution of optimal control problems based on this approximation procedure of the control function is described. Within the framework of the same example, the sensitivity of constraint functionals to the specification error of optimal parameters is investigated using three approaches as follows: 1) Pontryagin’s maximum principle (both numerically and theoretically); 2) the control parametrization technique in combination with the method of sliding nodes; 3) the newly proposed method. A comparative analysis is performed that confirms the effectiveness of the third method.
ISSN:0005-1179
1608-3032
DOI:10.1134/S0005117919060031