Loading…
Minimizers of a Landau–de Gennes energy with a subquadratic elastic energy
We study a modified Landau–de Gennes model for nematic liquid crystals, where the elastic term is assumed to be of subquadratic growth in the gradient. We analyze the behaviour of global minimizers in two- and three-dimensional domains, subject to uniaxial boundary conditions, in the asymptotic regi...
Saved in:
Published in: | Archive for rational mechanics and analysis 2019-09, Vol.233 (3), p.1169-1210 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a modified Landau–de Gennes model for nematic liquid crystals, where the elastic term is assumed to be of subquadratic growth in the gradient. We analyze the behaviour of global minimizers in two- and three-dimensional domains, subject to uniaxial boundary conditions, in the asymptotic regime where the length scale of the defect cores is small compared to the length scale of the domain. We obtain uniform convergence of the minimizers and of their gradients, away from the singularities of the limiting uniaxial map. We also demonstrate the presence of maximally biaxial cores in minimizers on two-dimensional domains, when the temperature is sufficiently low. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-019-01376-7 |