Loading…
Affine semipolar spaces
Deleting a hyperplane from a polar space associated with a symplectic polarity we get a specific, symplectic, affine polar space. Similar geometry, called an affine semipolar space arises as a result of generalization of the notion of an alternating form to a semiform. Some properties of these two g...
Saved in:
Published in: | Journal of geometry 2019-08, Vol.110 (2), p.1-20, Article 37 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deleting a hyperplane from a polar space associated with a symplectic polarity we get a specific, symplectic, affine polar space. Similar geometry, called an affine semipolar space arises as a result of generalization of the notion of an alternating form to a semiform. Some properties of these two geometries are given and their automorphism groups are characterized. |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-019-0494-y |