Loading…
A Deep Generative Model for Code-Switched Text
Code-switching, the interleaving of two or more languages within a sentence or discourse is pervasive in multilingual societies. Accurate language models for code-switched text are critical for NLP tasks. State-of-the-art data-intensive neural language models are difficult to train well from scarce...
Saved in:
Published in: | arXiv.org 2019-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Code-switching, the interleaving of two or more languages within a sentence or discourse is pervasive in multilingual societies. Accurate language models for code-switched text are critical for NLP tasks. State-of-the-art data-intensive neural language models are difficult to train well from scarce language-labeled code-switched text. A potential solution is to use deep generative models to synthesize large volumes of realistic code-switched text. Although generative adversarial networks and variational autoencoders can synthesize plausible monolingual text from continuous latent space, they cannot adequately address code-switched text, owing to their informal style and complex interplay between the constituent languages. We introduce VACS, a novel variational autoencoder architecture specifically tailored to code-switching phenomena. VACS encodes to and decodes from a two-level hierarchical representation, which models syntactic contextual signals in the lower level, and language switching signals in the upper layer. Sampling representations from the prior and decoding them produced well-formed, diverse code-switched sentences. Extensive experiments show that using synthetic code-switched text with natural monolingual data results in significant (33.06%) drop in perplexity. |
---|---|
ISSN: | 2331-8422 |