Loading…
Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes
The frequency and strength of extreme events are increasing due to climate change. These events have the potential to cause mass mortalities and recruitment failure in very short time scales. Here, we explored three relevant basic questions using green abalone: how the lethal levels of environmental...
Saved in:
Published in: | Marine and freshwater behaviour and physiology 2019-01, Vol.52 (1), p.1-15 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The frequency and strength of extreme events are increasing due to climate change. These events have the potential to cause mass mortalities and recruitment failure in very short time scales. Here, we explored three relevant basic questions using green abalone: how the lethal levels of environmental variables (i.e. temperature, oxygen, and pH) change trough time, what the short-term synergistic effects of stressors are, and what the metabolic responses and recovery capacity are at this timescale. We observed that very short-term events are less likely to cause mass mortalities than events lasting for several days, that the relative importance of hyperthermia, hypoxia, and combined effects change through time, and that the respiration rate increased under hyperthermia and decreased under hypoxia and the combined effects, while hemocyanin concentration increased under hypoxia and decreased under hyperthermia and combined effects. Independently of the stressor, green abalone re-established their respiratory rate after the stress. |
---|---|
ISSN: | 1023-6244 1029-0362 |
DOI: | 10.1080/10236244.2019.1607734 |