Loading…
The synthesis of data from instrumented structures and physics-based models via Gaussian processes
At the heart of structural engineering research is the use of data obtained from physical structures such as bridges, viaducts and buildings. These data can represent how the structure responds to various stimuli over time when in operation. Many models have been proposed in literature to represent...
Saved in:
Published in: | Journal of computational physics 2019-09, Vol.392, p.248-265 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | At the heart of structural engineering research is the use of data obtained from physical structures such as bridges, viaducts and buildings. These data can represent how the structure responds to various stimuli over time when in operation. Many models have been proposed in literature to represent such data, such as linear statistical models. Based upon these models, the health of the structure is reasoned about, e.g. through damage indices, changes in likelihood and statistical parameter estimates. On the other hand, physics-based models are typically used when designing structures to predict how the structure will respond to operational stimuli. These models represent how the structure responds to stimuli under idealised conditions. What remains unclear in the literature is how to combine the observed data with information from the idealised physics-based model into a model that describes the responses of the operational structure. This paper introduces a new approach which fuses together observed data from a physical structure during operation and information from a mathematical model. The observed data are combined with data simulated from the physics-based model using a multi-output Gaussian process formulation. The novelty of this method is how the information from observed data and the physics-based model is balanced to obtain a representative model of the structures response to stimuli. We present our method using data obtained from a fibre-optic sensor network installed on experimental railway sleepers. The curvature of the sleeper at sensor and also non-sensor locations is modelled, guided by the mathematical representation. We discuss how this approach can be used to reason about changes in the structures behaviour over time using simulations and experimental data. The results show that the methodology can accurately detect such changes. They also indicate that the methodology can infer information about changes in the parameters within the physics-based model, including those governing components of the structure not measured directly by sensors such as the ballast foundation.
•Probabilistic models can be used to balance information obtained from physics-based models and observed data.•Balancing is implemented by maximizing the predictive performance of observed test data-points.•Physics-based models can improve the inference of the structural response in areas of the domain which are unmeasured.•The proposed information synthesis can infer mo |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2019.04.065 |