Loading…
Search and investigation of extra-solar planets with polarimetry
Light reflected from planets is polarized. This basic property of planets provides the possibility for detecting and characterizing extra-solar planets using polarimetry. The expected polarization properties of extra-solar planets are discussed that can be inferred from polarimetry of “our” solar sy...
Saved in:
Published in: | Proceedings of the International Astronomical Union 2005-10, Vol.1 (C200), p.165-170 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Light reflected from planets is polarized. This basic property of planets provides the possibility for detecting and characterizing extra-solar planets using polarimetry. The expected polarization properties of extra-solar planets are discussed that can be inferred from polarimetry of “our” solar system planets. They show a large variety of characteristics depending on the atmospheric and/or surface properties. Best candidates for a polarimetric detection are extra-solar planets with an optically thick Rayleigh scattering layer. Even the detection of highly polarized extra-solar planets requires a very sophisticated instrument. We present the results from a phase A (feasibility) study for a polarimetric arm in the ESO VLT planet finder instrument. It is shown that giant planets around nearby stars can be searched and investigated with an imaging polarimeter, combined with a powerful AO system and a coronagraph at an 8 m class telescope. A similar type of polarimeter is also considered for the direct detection of terrestrial planets using an AO system on one of the future Extremely Large Telescopes. |
---|---|
ISSN: | 1743-9213 1743-9221 |
DOI: | 10.1017/S1743921306009252 |