Loading…
Silver Nanoparticle-Loaded Activated Carbon as an Adsorbent for the Removal of Mercury from Arabian Gas-Condensate
For the first time, an efficient method for the removal of mercury from Arabian gas-condensate samples was reported. Silver nanoparticles (AgNPs) functionalized with activated carbon (AC) prepared from local date-pits were used as an adsorbent. The physical and chemical properties of AgNP-AC were ch...
Saved in:
Published in: | Arabian journal for science and engineering (2011) 2019-07, Vol.44 (7), p.6285-6293 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the first time, an efficient method for the removal of mercury from Arabian gas-condensate samples was reported. Silver nanoparticles (AgNPs) functionalized with activated carbon (AC) prepared from local date-pits were used as an adsorbent. The physical and chemical properties of AgNP-AC were characterized using surface characterization techniques, and the adsorbent was evaluated under different experimental conditions. These factors considered include AgNP concentrations, contact time, the adsorbent dosage of AgNP-AC and initial mercury concentration. Langmuir adsorption isotherm, pseudo-second-order kinetics and Weber intraparticle diffusion models were used to evaluate the adsorption properties of the AgNP-AC. The results obtained revealed that at a low contact time, 25 mM AgNPs functionalized on AC provided the highest adsorption efficiency (98%) in the removal of mercury from Arabian gas-condensate. Also, it was observed that the increase in AgNP-AC dosage and initial mercury concentration plays a significant role in the mercury removal process. With a correlation coefficient of 0.9987, the adsorption process fits the Langmuir isotherm, suggesting that the adsorption is homogenous and monolayer. |
---|---|
ISSN: | 2193-567X 1319-8025 2191-4281 |
DOI: | 10.1007/s13369-018-3682-4 |