Loading…
New integral inequalities and asymptotic stability of fractional-order systems with unbounded time delay
The stability analysis of fractional-order systems with unbounded delay remains an open problem. In this paper, we firstly explore two new integral inequalities. Using these two integral inequalities obtained, the Halanay inequality with unbounded delay is extended to Caputo fractional-order case an...
Saved in:
Published in: | Nonlinear dynamics 2018-10, Vol.94 (2), p.1523-1534 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stability analysis of fractional-order systems with unbounded delay remains an open problem. In this paper, we firstly explore two new integral inequalities. Using these two integral inequalities obtained, the Halanay inequality with unbounded delay is extended to Caputo fractional-order case and Riemann–Liouville fractional-order case. Finally, several examples are presented to illustrate the effectiveness and applicability of the fractional Halanay inequalities in obtaining the asymptotic stability conditions of fractional-order systems with unbounded delay. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-018-4439-z |