Loading…
Weak approximation of the complex Brownian sheet from a Lévy sheet and applications to SPDEs
We consider a Lévy process in the plane and we use it to construct a family of complex-valued random fields that we show to converge in law, in the space of continuous functions, to a complex Brownian sheet. We apply this result to obtain weak approximations of the random field solution to a semilin...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a Lévy process in the plane and we use it to construct a family of complex-valued random fields that we show to converge in law, in the space of continuous functions, to a complex Brownian sheet. We apply this result to obtain weak approximations of the random field solution to a semilinear one-dimensional stochastic heat equation driven by the space-time white noise. |
---|---|
ISSN: | 2331-8422 |