Loading…

Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG formulation

A parallel edge-based solution of three dimensional viscoplastic flows governed by the steady Navier–Stokes equations is presented. The governing partial differential equations are discretized using the SUPG/PSPG stabilized finite element method on unstructured grids. The highly nonlinear algebraic...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2006-09, Vol.38 (4-5), p.365-381
Main Authors: Elias, Renato N., Martins, Marcos A. D., Coutinho, Alvaro L. G. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A parallel edge-based solution of three dimensional viscoplastic flows governed by the steady Navier–Stokes equations is presented. The governing partial differential equations are discretized using the SUPG/PSPG stabilized finite element method on unstructured grids. The highly nonlinear algebraic system arising from the convective and material effects is solved by an inexact Newton-Krylov method. The locally linear Newton equations are solved by GMRES with nodal block diagonal preconditioner. Matrix-vector products within GMRES are computed edge-by-edge (EDE), diminishing flop counts and memory requirements. A comparison between EDE and element-by-element data structures is presented. The parallel computations were based in a message passing interface standard. Performance tests were carried out in representative three dimensional problems, the sudden expansion for power-law fluids and the flow of Bingham fluids in a lid-driven cavity. Results have shown that edge based schemes requires less CPU time and memory than element-based solutions.
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-005-0012-y