Loading…

Tool wear in Ti-6Al-4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication

Wet cutting is the most common cooling method used during the cutting of titanium alloys. However, this method is associated with high costs, pollution, and hazards to operators. Minimal quantity lubrication (MQL) is an effective environmentally friendly cooling method, but is not suitable for diffi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2015-10, Vol.81 (1-4), p.87-101
Main Authors: Lin, Haisheng, Wang, Chengyong, Yuan, Yaohui, Chen, Zhihua, Wang, Qimin, Xiong, Weiqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wet cutting is the most common cooling method used during the cutting of titanium alloys. However, this method is associated with high costs, pollution, and hazards to operators. Minimal quantity lubrication (MQL) is an effective environmentally friendly cooling method, but is not suitable for difficult-to-machine materials because of its low heat transfer capacity. Using cryogenic air mixed with MQL (CAMQL) for cooling has better heat transfer, but high equipment costs and noise pollution limit its industrial application. This paper proposes the use of oils on water (OoW) as a cooling method for the turning of Ti-6Al-4V alloy and aims at exploring the effect of OoW cooling. Both external oils on water (EOoW) and internal oils on water (IOoW) methods are considered. The effects of EOoW spraying location and the amount of water required for IOoW are compared with respect to chip morphology, cutting temperatures, cutting forces, surface roughness, and tool wear. The use of CAMQL at different air temperatures is compared with wet and dry cutting. The results show that the chips created by OoW and CAMQL are continuous spirals. Compared with CAMQL, use of IOoW cooling with an appropriate amount of water or EOoW cooling from a proper location yields lower surface roughness and slower flank wear rate, and bare areas on the cutting tool substrate were absent because of better lubrication. The properties of the lubricants have an influence on IOoW and CAMQL, but not on EOoW. A suitable cutting tool coating should be selected to ensure the best cutting performance under these cooling methods.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-015-7062-x