Loading…
An improved artificial neural network for laser welding parameter selection and prediction
In the laser welding production, the selection and prediction of welding parameters is essentially important to guarantee weld quality. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, are an alternative approach for developing welding parameter forecas...
Saved in:
Published in: | International journal of advanced manufacturing technology 2013-09, Vol.68 (1-4), p.755-762 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the laser welding production, the selection and prediction of welding parameters is essentially important to guarantee weld quality. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, are an alternative approach for developing welding parameter forecasting model. In this paper, in order to speed up the convergence and avoid local minimum of the conditional ANN, genetic algorithm simulated annealing (GASA) based on the random global optimization is inducted into the network training. By means of GASA method, weights and threshold of neural networks can be globally optimized with short training time. Meanwhile, the gray correlation model (GCM) is used as a pre-processing tool to simplify the original networks based on obtaining the main influence elements of network inputs. The GCM–GASA–ANN method combines the complementary features of three computational intelligence techniques and owns very good applicability. Through the simulation and analysis of an orthogonal experiment, the proposed method can be proved to have higher accuracy and to perform better than the traditional ANN to forecast the laser welding parameters. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-013-4796-1 |