Loading…

An improved artificial neural network for laser welding parameter selection and prediction

In the laser welding production, the selection and prediction of welding parameters is essentially important to guarantee weld quality. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, are an alternative approach for developing welding parameter forecas...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2013-09, Vol.68 (1-4), p.755-762
Main Authors: Yuguang, Zhong, Kai, Xue, Dongyan, Shi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the laser welding production, the selection and prediction of welding parameters is essentially important to guarantee weld quality. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, are an alternative approach for developing welding parameter forecasting model. In this paper, in order to speed up the convergence and avoid local minimum of the conditional ANN, genetic algorithm simulated annealing (GASA) based on the random global optimization is inducted into the network training. By means of GASA method, weights and threshold of neural networks can be globally optimized with short training time. Meanwhile, the gray correlation model (GCM) is used as a pre-processing tool to simplify the original networks based on obtaining the main influence elements of network inputs. The GCM–GASA–ANN method combines the complementary features of three computational intelligence techniques and owns very good applicability. Through the simulation and analysis of an orthogonal experiment, the proposed method can be proved to have higher accuracy and to perform better than the traditional ANN to forecast the laser welding parameters.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-013-4796-1