Loading…
Characterization of local residual stress inhomogeneities in combined wire drawing processes of AISI 1045 steel bars
Cold formed semi-finished products face an increasing demand from industry as they can be manufactured to dimensional precision and high surface quality. Products from cold formed bar, on the other hand, may contain inhomogeneous distributions of mechanical properties and residual stresses which ari...
Saved in:
Published in: | International journal of advanced manufacturing technology 2014-01, Vol.70 (1-4), p.661-668 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cold formed semi-finished products face an increasing demand from industry as they can be manufactured to dimensional precision and high surface quality. Products from cold formed bar, on the other hand, may contain inhomogeneous distributions of mechanical properties and residual stresses which arise from the elastic response of the material to an inhomogeneous distribution of elastic–plastic strains. These material properties may cause distortion in further manufacturing operations, and consequently, precision of components then could be reestablished at higher costs only. X-ray diffraction residual stress analysis, for example, is misleading if only slices or cross sections of a bar or a component are considered and residual stress fields and their variations are neglected. Automotive products generally are cut from drawn bars, and local differences in microstructure, mechanical properties and residual stress states are increasing the danger of dimensional changes out of a specified range. Cold-drawn bars were manufactured with different drawing angles and uncoated and TiCN-coated dies. Surface and subsurface properties were investigated along the length and around the periphery of drawn bars. Differences in material states, those affected by the contact zone and those related to the elastic–plastic deformation of the drawing process, were observed. The variation of surface residual stresses of up to a factor of 2 can be correlated with locally different friction coefficients and slip stick effects. As subsurface material states (residual stresses and strain hardening) do not show a significant variation around the periphery and along the length of bars, the effects of geometry variations of hot rolled bar, the effect of a not perfectly concentric bar at the die entrance and/or the level of pre-straightening ahead of drawing are assumed to be of minor importance, compared to the high level of plastic strain involved in cold drawing. The local properties identified here will lead to a higher degree of dimensional scatter of individual automotive components cut from these long cold-drawn bars. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-013-5314-1 |