Loading…
A critical comparative assessment of differential equation-driven methods for structural topology optimization
In recent years, differential equation-driven methods have emerged as an alternate approach for structural topology optimization. In such methods, the design is evolved using special differential equations. Implicit level-set methods are one such set of approaches in which the design domain is repre...
Saved in:
Published in: | Structural and multidisciplinary optimization 2013-10, Vol.48 (4), p.685-710 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, differential equation-driven methods have emerged as an alternate approach for structural topology optimization. In such methods, the design is evolved using special differential equations. Implicit level-set methods are one such set of approaches in which the design domain is represented in terms of implicit functions and generally (but not necessarily) use the Hamilton-Jacobi equation as the evolution equation. Another set of approaches are referred to as phase-field methods; which generally use a reaction-diffusion equation, such as the Allen-Cahn equation, for topology evolution. In this work, we exhaustively analyze four level-set methods and one phase-field method, which are representative of the literature. In order to evaluate performance, all the methods are implemented in MATLAB and studied using two-dimensional compliance minimization problems. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-013-0935-4 |