Loading…
Weighted reproducing kernel collocation method based on error analysis for solving inverse elasticity problems
For inverse problems equipped with incomplete boundary conditions, a simple solution strategy to obtain approximations remains a challenge in the fields of engineering and science. Based on our previous study, the weighted reproducing kernel collocation method (W-RKCM) shows optimal convergence in s...
Saved in:
Published in: | Acta mechanica 2019-10, Vol.230 (10), p.3477-3497 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For inverse problems equipped with incomplete boundary conditions, a simple solution strategy to obtain approximations remains a challenge in the fields of engineering and science. Based on our previous study, the weighted reproducing kernel collocation method (W-RKCM) shows optimal convergence in solving inverse Cauchy problems. As such, this work further introduces the W-RKCM to solve inverse problems in elasticity. From mathematical error estimate and numerical convergence study, it is shown that the weighted least-squares formulation can properly balance the errors in the domain and on the boundary. By comparing the approximations obtained by W-RKCM with those obtained by the direct collocation method, the reproducing kernel shape function can retain the locality without using a large support size, and the corresponding approximations exhibit extremely high solution accuracy. The stability of the W-RKCM is demonstrated by adding noise on the boundary conditions. This work shows the efficacy of the proposed W-RKCM in solving inverse elasticity problems as no additional technique is involved to reach the desired solution accuracy in comparison with the existing methods in the literature. |
---|---|
ISSN: | 0001-5970 1619-6937 |
DOI: | 10.1007/s00707-019-02473-0 |