Loading…
Numerical simulation of mud-flows impacting structures
The study of the interaction of mud-flows with obstacles is important to define inundation zones in urban areas and to design the possible structural countermeasures. The paper numerically investigates the impact of a mud-flow on rigid obstacles to evaluate the force acting on them using two differe...
Saved in:
Published in: | Journal of mountain science 2019-02, Vol.16 (2), p.364-382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of the interaction of mud-flows with obstacles is important to define inundation zones in urban areas and to design the possible structural countermeasures. The paper numerically investigates the impact of a mud-flow on rigid obstacles to evaluate the force acting on them using two different depth-integrated theoretical models, Single-Phase Model (SPM) and Two-Phase Model (TPM), to compare their performance and limits. In the first one the water-sediment mixture is represented as a homogeneous continuum described by a shear-thinning power-law rheology. Alternatively, the two-phase model proposed by Di Cristo et al in 2016 is used, which separately accounts for the liquid and solid phases. The considered test cases are represented by a 1D landslide flowing on a steep slope impacting on a rigid wall and a 2D mud dam-break flowing on a horizontal bottom in presence of single and multiple rigid obstacles. In the 1D test case, characterized by a very steep slope, the Two-Phase Model predicts the separation between the two phases with a significant longitudinal variation of the solid concentration. In this case the results indicate appreciable differences between the two models in the estimation of both the wave celerity and the magnitude of the impact, with an overestimation of the peak force when using the Single-Phase Model. In the 2D test-cases, where the liquid and solid phases remain mixed, even if the flow fields predicted by the two models present some differences, the essential features of the interaction with the obstacles, along with the maximum impact force, are comparable. |
---|---|
ISSN: | 1672-6316 1993-0321 1008-2786 |
DOI: | 10.1007/s11629-018-5279-5 |