Loading…

Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens

Pyrrolnitrin is a secondary metabolite derived from tryptophan and has strong antifungal activity. Recently we described four genes, prnABCD, from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. In the work presented here, we describe the function of each prn gene product. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Bacteriology 1998-04, Vol.180 (7), p.1939-1943
Main Authors: Kirner, S. (Universitat Hohenheim, Stuttgart.), Hammer, P.E, Hill, D.S, Altmann, A, Fischer, I, Weislo, L.J, Lanahan, M, Pee, K.H. van, Ligon, J.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pyrrolnitrin is a secondary metabolite derived from tryptophan and has strong antifungal activity. Recently we described four genes, prnABCD, from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. In the work presented here, we describe the function of each prn gene product. The four genes encode proteins identical in size and serology to proteins present in wild-type Pseudomonas fluorescens, but absent from a mutant from which the entire prn gene region had been deleted. The prnA gene product catalyzes the chlorination of L-tryptophan to form 7-chloro-L-tryptophan. The prnB gene product catalyzes a ring rearrangement and decarboxylation to convert 7-chloro-L-tryptophan to monodechloroaminopyrrolnitrin. The prnC gene product chlorinates monodechloroaminopyrrolnitrin at the 3 position to form aminopyrrolnitrin. The prnD gene product catalyzes the oxidation of the amino group of aminopyrrolnitrin to a nitro group to form pyrrolnitrin. The organization of the prn genes in the operon is identical to the order of the reactions in the biosynthetic pathway
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/jb.180.7.1939-1943.1998