Loading…
Pure bending of a piezoelectric layer in second gradient electroelasticity theory
The semi-inverse analytical solution of a pure bending problem for a piezoelectric layer is developed in the framework of linear electroelasticity theory with strain gradient and electric field gradient effects. The simplified gradient theory of transversely isotropic material with a single addition...
Saved in:
Published in: | Acta mechanica 2019-12, Vol.230 (12), p.4197-4211 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The semi-inverse analytical solution of a pure bending problem for a piezoelectric layer is developed in the framework of linear electroelasticity theory with strain gradient and electric field gradient effects. The simplified gradient theory of transversely isotropic material with a single additional length scale parameter is considered. A two-dimensional solution is derived assuming plane strain state of a layer (cylindrical bending of a plate) and low dielectric properties of the surrounding medium. The electromechanical response of a layer is found under conditions of prescribed bending moments at the end faces. Boundary conditions on the top and bottom surfaces of a layer are satisfied exactly. The analytical solution is validated based on numerical finite element modeling. It is shown that the obtained solutions can be used for the validation of size-dependent beam and plate models in the second gradient electroelasticity theory. |
---|---|
ISSN: | 0001-5970 1619-6937 |
DOI: | 10.1007/s00707-019-02484-x |