Loading…
On odd deficient-perfect numbers with four distinct prime divisors
For a positive integer \(n\), let \(\sigma(n)\) denote the sum of the positive divisors of \(n\). Let \(d\) be a proper divisor of \(n\). We call \(n\) a deficient-perfect number if \(\sigma(n)=2n-d\). In this paper, we show that the only odd deficient-perfect number with four distinct prime divisor...
Saved in:
Published in: | arXiv.org 2019-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a positive integer \(n\), let \(\sigma(n)\) denote the sum of the positive divisors of \(n\). Let \(d\) be a proper divisor of \(n\). We call \(n\) a deficient-perfect number if \(\sigma(n)=2n-d\). In this paper, we show that the only odd deficient-perfect number with four distinct prime divisors is \(3^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\). |
---|---|
ISSN: | 2331-8422 |