Loading…
Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates
Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and wat...
Saved in:
Published in: | Russian journal of general chemistry 2019-07, Vol.89 (7), p.1438-1446 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693 |
container_end_page | 1446 |
container_issue | 7 |
container_start_page | 1438 |
container_title | Russian journal of general chemistry |
container_volume | 89 |
creator | Bondarev, N. V. |
description | Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the
k
-means exploration method. |
doi_str_mv | 10.1134/S1070363219070144 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2273819829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726671950</galeid><sourcerecordid>A726671950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEqXwAewisU7xI3HiZVXxkgpUFNaRk4wrl9QutiPUn-CbcRIkFgh5MTN3zp2xNFF0idEMY5perzHKEWWUYB4SnKZH0QQzVCSUZug45EFN-v5pdObcFiGMECOT6GtuvZKqVqKNn6CzQ_Cfxr7HQjfxY9d6tW8hXioNwsYvsLHgnDI6lsbGKwuNqn1f9vSiFaEXpolBMjJed84LpUWlWuUPg2Ia1e0GfGV8z4dqYazRwoM7j06kaB1c_MRp9HZ787q4T5bPdw-L-TKpaZb5hOeoEKnMOUOshowynDEKqMao4lXRkEpKTiSqKkYo4QUXLG8akE2W5anEjNNpdDXO3Vvz0YHz5dZ0VoeVJSE5LTAvSE_NRmojWiiVlsZbUYfXwE7VRoNUQZ_nhLEc8wwFAx4NtTXOWZDl3qqdsIcSo7K_U_nnTsFDRo8LrN6A_f3K_6Zv-2OV6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273819829</pqid></control><display><type>article</type><title>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</title><source>Springer Link</source><creator>Bondarev, N. V.</creator><creatorcontrib>Bondarev, N. V.</creatorcontrib><description>Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the
k
-means exploration method.</description><identifier>ISSN: 1070-3632</identifier><identifier>EISSN: 1608-3350</identifier><identifier>DOI: 10.1134/S1070363219070144</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acetone ; Acetonitrile ; Algorithms ; Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Classification ; Comparative analysis ; Data mining ; Ethanol ; Linearity ; Machine learning ; Multilayer perceptrons ; Neural networks ; Potassium ; Predictions ; Regression ; Regression analysis ; Sodium ; Solvents ; Stability analysis ; Stability constants ; Sustainable development</subject><ispartof>Russian journal of general chemistry, 2019-07, Vol.89 (7), p.1438-1446</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</citedby><cites>FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bondarev, N. V.</creatorcontrib><title>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</title><title>Russian journal of general chemistry</title><addtitle>Russ J Gen Chem</addtitle><description>Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the
k
-means exploration method.</description><subject>Acetone</subject><subject>Acetonitrile</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Data mining</subject><subject>Ethanol</subject><subject>Linearity</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Potassium</subject><subject>Predictions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Sodium</subject><subject>Solvents</subject><subject>Stability analysis</subject><subject>Stability constants</subject><subject>Sustainable development</subject><issn>1070-3632</issn><issn>1608-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRSMEEqXwAewisU7xI3HiZVXxkgpUFNaRk4wrl9QutiPUn-CbcRIkFgh5MTN3zp2xNFF0idEMY5perzHKEWWUYB4SnKZH0QQzVCSUZug45EFN-v5pdObcFiGMECOT6GtuvZKqVqKNn6CzQ_Cfxr7HQjfxY9d6tW8hXioNwsYvsLHgnDI6lsbGKwuNqn1f9vSiFaEXpolBMjJed84LpUWlWuUPg2Ia1e0GfGV8z4dqYazRwoM7j06kaB1c_MRp9HZ787q4T5bPdw-L-TKpaZb5hOeoEKnMOUOshowynDEKqMao4lXRkEpKTiSqKkYo4QUXLG8akE2W5anEjNNpdDXO3Vvz0YHz5dZ0VoeVJSE5LTAvSE_NRmojWiiVlsZbUYfXwE7VRoNUQZ_nhLEc8wwFAx4NtTXOWZDl3qqdsIcSo7K_U_nnTsFDRo8LrN6A_f3K_6Zv-2OV6A</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bondarev, N. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</title><author>Bondarev, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Acetonitrile</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Data mining</topic><topic>Ethanol</topic><topic>Linearity</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Potassium</topic><topic>Predictions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Sodium</topic><topic>Solvents</topic><topic>Stability analysis</topic><topic>Stability constants</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondarev, N. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of general chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondarev, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</atitle><jtitle>Russian journal of general chemistry</jtitle><stitle>Russ J Gen Chem</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>89</volume><issue>7</issue><spage>1438</spage><epage>1446</epage><pages>1438-1446</pages><issn>1070-3632</issn><eissn>1608-3350</eissn><abstract>Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the
k
-means exploration method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1070363219070144</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-3632 |
ispartof | Russian journal of general chemistry, 2019-07, Vol.89 (7), p.1438-1446 |
issn | 1070-3632 1608-3350 |
language | eng |
recordid | cdi_proquest_journals_2273819829 |
source | Springer Link |
subjects | Acetone Acetonitrile Algorithms Artificial neural networks Chemistry Chemistry and Materials Science Chemistry/Food Science Classification Comparative analysis Data mining Ethanol Linearity Machine learning Multilayer perceptrons Neural networks Potassium Predictions Regression Regression analysis Sodium Solvents Stability analysis Stability constants Sustainable development |
title | Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20and%20Multiple%20Linear%20Regression%20for%20Prediction%20and%20Classification%20of%20Sustainability%20of%20Sodium%20and%20Potassium%20Coronates&rft.jtitle=Russian%20journal%20of%20general%20chemistry&rft.au=Bondarev,%20N.%20V.&rft.date=2019-07-01&rft.volume=89&rft.issue=7&rft.spage=1438&rft.epage=1446&rft.pages=1438-1446&rft.issn=1070-3632&rft.eissn=1608-3350&rft_id=info:doi/10.1134/S1070363219070144&rft_dat=%3Cgale_proqu%3EA726671950%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273819829&rft_id=info:pmid/&rft_galeid=A726671950&rfr_iscdi=true |