Loading…

Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates

Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and wat...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of general chemistry 2019-07, Vol.89 (7), p.1438-1446
Main Author: Bondarev, N. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693
cites cdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693
container_end_page 1446
container_issue 7
container_start_page 1438
container_title Russian journal of general chemistry
container_volume 89
creator Bondarev, N. V.
description Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the k -means exploration method.
doi_str_mv 10.1134/S1070363219070144
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2273819829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726671950</galeid><sourcerecordid>A726671950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEqXwAewisU7xI3HiZVXxkgpUFNaRk4wrl9QutiPUn-CbcRIkFgh5MTN3zp2xNFF0idEMY5perzHKEWWUYB4SnKZH0QQzVCSUZug45EFN-v5pdObcFiGMECOT6GtuvZKqVqKNn6CzQ_Cfxr7HQjfxY9d6tW8hXioNwsYvsLHgnDI6lsbGKwuNqn1f9vSiFaEXpolBMjJed84LpUWlWuUPg2Ia1e0GfGV8z4dqYazRwoM7j06kaB1c_MRp9HZ787q4T5bPdw-L-TKpaZb5hOeoEKnMOUOshowynDEKqMao4lXRkEpKTiSqKkYo4QUXLG8akE2W5anEjNNpdDXO3Vvz0YHz5dZ0VoeVJSE5LTAvSE_NRmojWiiVlsZbUYfXwE7VRoNUQZ_nhLEc8wwFAx4NtTXOWZDl3qqdsIcSo7K_U_nnTsFDRo8LrN6A_f3K_6Zv-2OV6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273819829</pqid></control><display><type>article</type><title>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</title><source>Springer Link</source><creator>Bondarev, N. V.</creator><creatorcontrib>Bondarev, N. V.</creatorcontrib><description>Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the k -means exploration method.</description><identifier>ISSN: 1070-3632</identifier><identifier>EISSN: 1608-3350</identifier><identifier>DOI: 10.1134/S1070363219070144</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acetone ; Acetonitrile ; Algorithms ; Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Classification ; Comparative analysis ; Data mining ; Ethanol ; Linearity ; Machine learning ; Multilayer perceptrons ; Neural networks ; Potassium ; Predictions ; Regression ; Regression analysis ; Sodium ; Solvents ; Stability analysis ; Stability constants ; Sustainable development</subject><ispartof>Russian journal of general chemistry, 2019-07, Vol.89 (7), p.1438-1446</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</citedby><cites>FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bondarev, N. V.</creatorcontrib><title>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</title><title>Russian journal of general chemistry</title><addtitle>Russ J Gen Chem</addtitle><description>Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the k -means exploration method.</description><subject>Acetone</subject><subject>Acetonitrile</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Data mining</subject><subject>Ethanol</subject><subject>Linearity</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Potassium</subject><subject>Predictions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Sodium</subject><subject>Solvents</subject><subject>Stability analysis</subject><subject>Stability constants</subject><subject>Sustainable development</subject><issn>1070-3632</issn><issn>1608-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRSMEEqXwAewisU7xI3HiZVXxkgpUFNaRk4wrl9QutiPUn-CbcRIkFgh5MTN3zp2xNFF0idEMY5perzHKEWWUYB4SnKZH0QQzVCSUZug45EFN-v5pdObcFiGMECOT6GtuvZKqVqKNn6CzQ_Cfxr7HQjfxY9d6tW8hXioNwsYvsLHgnDI6lsbGKwuNqn1f9vSiFaEXpolBMjJed84LpUWlWuUPg2Ia1e0GfGV8z4dqYazRwoM7j06kaB1c_MRp9HZ787q4T5bPdw-L-TKpaZb5hOeoEKnMOUOshowynDEKqMao4lXRkEpKTiSqKkYo4QUXLG8akE2W5anEjNNpdDXO3Vvz0YHz5dZ0VoeVJSE5LTAvSE_NRmojWiiVlsZbUYfXwE7VRoNUQZ_nhLEc8wwFAx4NtTXOWZDl3qqdsIcSo7K_U_nnTsFDRo8LrN6A_f3K_6Zv-2OV6A</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bondarev, N. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</title><author>Bondarev, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Acetonitrile</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Data mining</topic><topic>Ethanol</topic><topic>Linearity</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Potassium</topic><topic>Predictions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Sodium</topic><topic>Solvents</topic><topic>Stability analysis</topic><topic>Stability constants</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondarev, N. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of general chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondarev, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates</atitle><jtitle>Russian journal of general chemistry</jtitle><stitle>Russ J Gen Chem</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>89</volume><issue>7</issue><spage>1438</spage><epage>1446</epage><pages>1438-1446</pages><issn>1070-3632</issn><eissn>1608-3350</eissn><abstract>Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the k -means exploration method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1070363219070144</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-3632
ispartof Russian journal of general chemistry, 2019-07, Vol.89 (7), p.1438-1446
issn 1070-3632
1608-3350
language eng
recordid cdi_proquest_journals_2273819829
source Springer Link
subjects Acetone
Acetonitrile
Algorithms
Artificial neural networks
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Classification
Comparative analysis
Data mining
Ethanol
Linearity
Machine learning
Multilayer perceptrons
Neural networks
Potassium
Predictions
Regression
Regression analysis
Sodium
Solvents
Stability analysis
Stability constants
Sustainable development
title Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20and%20Multiple%20Linear%20Regression%20for%20Prediction%20and%20Classification%20of%20Sustainability%20of%20Sodium%20and%20Potassium%20Coronates&rft.jtitle=Russian%20journal%20of%20general%20chemistry&rft.au=Bondarev,%20N.%20V.&rft.date=2019-07-01&rft.volume=89&rft.issue=7&rft.spage=1438&rft.epage=1446&rft.pages=1438-1446&rft.issn=1070-3632&rft.eissn=1608-3350&rft_id=info:doi/10.1134/S1070363219070144&rft_dat=%3Cgale_proqu%3EA726671950%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-9708a4f79606ce5361563e0c10b9b8d2bff92f0bb6232989a67ddefd5574f1693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273819829&rft_id=info:pmid/&rft_galeid=A726671950&rfr_iscdi=true