Loading…

(Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry

Current concerns regarding the environmental and economic sustainability of petroleum-based transportation fuels, including jet fuel, are driving interest into alternative fuels. To study the feasibility of using biodiesel in aviation engines, a deeper knowledge on solid–liquid equilibrium (SLE) of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2019-09, Vol.137 (6), p.2017-2028
Main Authors: Bessa, Larissa Castello Branco Almeida, Robustillo, Maria Dolores, Meirelles, Antonio José de Almeida, Pessôa Filho, Pedro de Alcântara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current concerns regarding the environmental and economic sustainability of petroleum-based transportation fuels, including jet fuel, are driving interest into alternative fuels. To study the feasibility of using biodiesel in aviation engines, a deeper knowledge on solid–liquid equilibrium (SLE) of biodiesel/jet fuel blends is required. This work presents SLE data of binary mixtures containing p-xylene, a representative compound of aviation fuel, and fatty esters present in ethylic biodiesel. Experimental data were obtained through differential scanning calorimetry. A simple eutectic behavior was observed for all binary systems, although small regions of partial miscibility are also present. Observed eutectic temperature and composition (ethyl ester mole fraction) are 259.0 K and 0.45, 269.0 K and 0.32, 275.5 K and 0.22, 280.0 K and 0.15, and 247.7 K and 0.58 for systems containing ethyl laurate, ethyl myristate, ethyl palmitate, ethyl stearate and ethyl oleate, respectively. Good agreement was obtained between experimental and calculated data when using UNIFAC (Dortmund) model or Flory–Huggins equation, with root-mean-square deviations ranging from 0.47 to 1.90 K. The systems exhibit significant deviations from ideality, which cannot be neglected in model calculations.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-019-08085-z