Loading…
In-situ Vapor-Phase Lubrication of MEMS
In-situ vapor-phase lubrication of sidewall MicroElectroMechanical System (MEMS) devices is investigated with 1-pentanol vapor. The 1-pentanol vapor successfully maintains lubricating properties between silicon contacts of MEMS devices. This is attributed to the ability of alcohol to adsorb on the s...
Saved in:
Published in: | Tribology letters 2008, Vol.29 (1), p.67-74 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In-situ vapor-phase lubrication of sidewall MicroElectroMechanical System (MEMS) devices is investigated with 1-pentanol vapor. The 1-pentanol vapor successfully maintains lubricating properties between silicon contacts of MEMS devices. This is attributed to the ability of alcohol to adsorb on the silicon surface and sustain a lubricating layer, which prevents wear of the MEMS surfaces and minimizes friction. In the presence of these vapors, MEMS devices with sliding contacts operated
without failure
for up to a factor of 1.7 × 10
4
longer than in dry N
2
gas alone, representing a dramatic improvement in operating life. Adhesion and friction were also investigated as a function of alcohol vapor pressure. The adhesive force between microfabricated MEMS sidewall surfaces increases from ∼30 to ∼60 nN as the alcohol vapor pressure is increased from 0 to 20% of saturation, and then only slightly increases to ∼75 nN at 95% of saturation vapor pressure. This increase in force is well within the capabilities of even the lowest force on-chip actuators, such as electrostatic comb drives which can typically generate a few μN of force. The static friction force was found to be independent of alcohol vapor pressure within the uncertainties in the measurement. |
---|---|
ISSN: | 1023-8883 1573-2711 |
DOI: | 10.1007/s11249-007-9283-0 |