Loading…
Singular cycles connecting saddle periodic orbit and saddle equilibrium in piecewise smooth systems
For flows, the singular cycles connecting saddle periodic orbit and saddle equilibrium can potentially result in the so-called singular horseshoe, which means the existence of a non-uniformly hyperbolic chaotic invariant set. However, it is very hard to find a specific dynamical system that exhibits...
Saved in:
Published in: | Nonlinear dynamics 2019-09, Vol.97 (4), p.2469-2481 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For flows, the singular cycles connecting saddle periodic orbit and saddle equilibrium can potentially result in the so-called singular horseshoe, which means the existence of a non-uniformly hyperbolic chaotic invariant set. However, it is very hard to find a specific dynamical system that exhibits such singular cycles in general. In this paper, the existence of the singular cycles involving saddle periodic orbits is studied by two types of piecewise smooth systems: One is the piecewise smooth systems having an admissible saddle point with only real eigenvalues and an admissible saddle periodic orbit, and the other is the piecewise smooth systems having an admissible saddle-focus and an admissible saddle periodic orbit. Several kinds of sufficient conditions are obtained for the existence of only one heteroclinic cycle or only two heteroclinic cycles in the two types of piecewise smooth systems, respectively. In addition, some examples are presented to illustrate the results. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-019-05142-y |