Loading…

Road-to-rig-to-desktop: Virtual development using real-time engine modelling and powertrain co-simulation

By front-loading of the conventional vehicle testing to engine test bench or even further forward to offline simulations, it is possible to assess a large variation of powertrain design parameters and testing manoeuvres in the early development stages. This entails a substantial cost reduction compa...

Full description

Saved in:
Bibliographic Details
Published in:International journal of engine research 2019-09, Vol.20 (7), p.686-695
Main Authors: Andert, Jakob, Xia, Feihong, Klein, Serge, Guse, Daniel, Savelsberg, Rene, Tharmakulasingam, Raul, Thewes, Matthias, Scharf, Johannes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By front-loading of the conventional vehicle testing to engine test bench or even further forward to offline simulations, it is possible to assess a large variation of powertrain design parameters and testing manoeuvres in the early development stages. This entails a substantial cost reduction compared to physical vehicle testing and hence an optimisation of the modern powertrain development process. This approach is often referred to as road-to-rig-to-desktop. To demonstrate the potential of this road-to-rig-to-desktop methodology as a seamless development process, a crank angle–resolved real-time engine model for a turbocharged gasoline engine was built with the simulation tool GT-POWER®. The model was validated with measurement data from an engine test bench and integrated into a vehicle co-simulation, which also includes a dual clutch transmission, the chassis, the environment and the automated driver. The most relevant functions of the engine and the transmission control systems were implemented in a Simulink-based software control unit. To verify the engine model in the transient vehicle simulation, two 900-s time windows from a 2-h real driving emission test, representing urban and motorway conditions, are simulated using the developed co-simulation platform. The simulation results are compared with the respective vehicle measurement data. The fuel consumption deviation caused by the combustion engine model is within 5%. The transient system behaviour and the dominant engine operation points could be predicted with a satisfying accuracy.
ISSN:1468-0874
2041-3149
DOI:10.1177/1468087418767221