Loading…
OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE
Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ i...
Saved in:
Published in: | Proceedings of the Edinburgh Mathematical Society 2004-10, Vol.47 (3), p.679-694 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ is nuclear whenever $T$ is nuclear from $X$ to $Z$. The particular case of the theorem with $Z=Y^{**}$ is due to Grothendieck and Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear operator $T$ from an arbitrary Banach space $X$ to an $\mathcal{L}_\infty$-space $Y$ is nuclear whenever $T$ is nuclear from $X$ to some Banach space $Z$ containing $Y$ as a subspace. AMS 2000 Mathematics subject classification: Primary 46B20; 46B28; 47B10 |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091502001165 |