Loading…

OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE

Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ i...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Edinburgh Mathematical Society 2004-10, Vol.47 (3), p.679-694
Main Author: Oja, Eve
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-23b26b0c12deb96e668ecfccdadddf93dab673a5dd5f208941f1ed78a2a1373f3
cites
container_end_page 694
container_issue 3
container_start_page 679
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 47
creator Oja, Eve
description Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ is nuclear whenever $T$ is nuclear from $X$ to $Z$. The particular case of the theorem with $Z=Y^{**}$ is due to Grothendieck and Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear operator $T$ from an arbitrary Banach space $X$ to an $\mathcal{L}_\infty$-space $Y$ is nuclear whenever $T$ is nuclear from $X$ to some Banach space $Z$ containing $Y$ as a subspace. AMS 2000 Mathematics subject classification: Primary 46B20; 46B28; 47B10
doi_str_mv 10.1017/S0013091502001165
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_228293666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091502001165</cupid><sourcerecordid>1401848441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-23b26b0c12deb96e668ecfccdadddf93dab673a5dd5f208941f1ed78a2a1373f3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKd_gG_F92o-1rR5DCXr1K6dWaf4FNImlc2PzXQD_e_N2FBEfLoXfufcc7gAnCN4iSCKr6YQIgIZiiD2G6LRAeihAR2EJCHsEPS2ONzyY3DSdQsIYRxHqAfG5URIXpVyGlQjXgVciqCYpbngMngYiULcC-mJePxFhqUMeJBzmXkqeZGJYDrhqTgFR61-6ezZfvbBbCiqdBTmZXad8jxsCIvWISY1pjVsEDa2ZtRSmtimbRqjjTEtI0bXNCY6MiZqMUzYALXImjjRWCMSk5b0wcXu7sot3ze2W6vFcuPefKTCOMGMUEq9CO1EjVt2nbOtWrn5q3afCkG1fZr68zTvCXeeebe2H98G7Z6VbxRHimZ3qmDjfHIjpbr1erLP0K-1m5sn-9Pk_5QvtJ512A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228293666</pqid></control><display><type>article</type><title>OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE</title><source>Cambridge Journals Online</source><creator>Oja, Eve</creator><creatorcontrib>Oja, Eve</creatorcontrib><description>Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ is nuclear whenever $T$ is nuclear from $X$ to $Z$. The particular case of the theorem with $Z=Y^{**}$ is due to Grothendieck and Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear operator $T$ from an arbitrary Banach space $X$ to an $\mathcal{L}_\infty$-space $Y$ is nuclear whenever $T$ is nuclear from $X$ to some Banach space $Z$ containing $Y$ as a subspace. AMS 2000 Mathematics subject classification: Primary 46B20; 46B28; 47B10</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091502001165</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>approximation property ; extension operator ; nuclear operators ; projective tensor products</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2004-10, Vol.47 (3), p.679-694</ispartof><rights>Copyright © Edinburgh Mathematical Society 2004</rights><rights>2004 Edinburgh Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-23b26b0c12deb96e668ecfccdadddf93dab673a5dd5f208941f1ed78a2a1373f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091502001165/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Oja, Eve</creatorcontrib><title>OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ is nuclear whenever $T$ is nuclear from $X$ to $Z$. The particular case of the theorem with $Z=Y^{**}$ is due to Grothendieck and Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear operator $T$ from an arbitrary Banach space $X$ to an $\mathcal{L}_\infty$-space $Y$ is nuclear whenever $T$ is nuclear from $X$ to some Banach space $Z$ containing $Y$ as a subspace. AMS 2000 Mathematics subject classification: Primary 46B20; 46B28; 47B10</description><subject>approximation property</subject><subject>extension operator</subject><subject>nuclear operators</subject><subject>projective tensor products</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMoOKd_gG_F92o-1rR5DCXr1K6dWaf4FNImlc2PzXQD_e_N2FBEfLoXfufcc7gAnCN4iSCKr6YQIgIZiiD2G6LRAeihAR2EJCHsEPS2ONzyY3DSdQsIYRxHqAfG5URIXpVyGlQjXgVciqCYpbngMngYiULcC-mJePxFhqUMeJBzmXkqeZGJYDrhqTgFR61-6ezZfvbBbCiqdBTmZXad8jxsCIvWISY1pjVsEDa2ZtRSmtimbRqjjTEtI0bXNCY6MiZqMUzYALXImjjRWCMSk5b0wcXu7sot3ze2W6vFcuPefKTCOMGMUEq9CO1EjVt2nbOtWrn5q3afCkG1fZr68zTvCXeeebe2H98G7Z6VbxRHimZ3qmDjfHIjpbr1erLP0K-1m5sn-9Pk_5QvtJ512A</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Oja, Eve</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200410</creationdate><title>OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE</title><author>Oja, Eve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-23b26b0c12deb96e668ecfccdadddf93dab673a5dd5f208941f1ed78a2a1373f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>approximation property</topic><topic>extension operator</topic><topic>nuclear operators</topic><topic>projective tensor products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oja, Eve</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oja, Eve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2004-10</date><risdate>2004</risdate><volume>47</volume><issue>3</issue><spage>679</spage><epage>694</epage><pages>679-694</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>Let $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ is nuclear whenever $T$ is nuclear from $X$ to $Z$. The particular case of the theorem with $Z=Y^{**}$ is due to Grothendieck and Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear operator $T$ from an arbitrary Banach space $X$ to an $\mathcal{L}_\infty$-space $Y$ is nuclear whenever $T$ is nuclear from $X$ to some Banach space $Z$ containing $Y$ as a subspace. AMS 2000 Mathematics subject classification: Primary 46B20; 46B28; 47B10</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091502001165</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-0915
ispartof Proceedings of the Edinburgh Mathematical Society, 2004-10, Vol.47 (3), p.679-694
issn 0013-0915
1464-3839
language eng
recordid cdi_proquest_journals_228293666
source Cambridge Journals Online
subjects approximation property
extension operator
nuclear operators
projective tensor products
title OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPERATORS%20THAT%20ARE%20NUCLEAR%20WHENEVER%20THEY%20ARE%20NUCLEAR%20FOR%20A%20LARGER%20RANGE%20SPACE&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Oja,%20Eve&rft.date=2004-10&rft.volume=47&rft.issue=3&rft.spage=679&rft.epage=694&rft.pages=679-694&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091502001165&rft_dat=%3Cproquest_cross%3E1401848441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-23b26b0c12deb96e668ecfccdadddf93dab673a5dd5f208941f1ed78a2a1373f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=228293666&rft_id=info:pmid/&rft_cupid=10_1017_S0013091502001165&rfr_iscdi=true