Loading…
TRANSFORMATION OF STURM–LIOUVILLE PROBLEMS WITH DECREASING AFFINE BOUNDARY CONDITIONS
We consider Sturm–Liouville boundary-value problems on the interval $[0,1]$ of the form $-y''+qy=\lambda y$ with boundary conditions $y'(0)\sin\alpha=y(0)\cos\alpha$ and $y'(1)=(a\lambda+b)y(1)$, where $a\lt0$. We show that via multiple Crum–Darboux transformations, this boundary...
Saved in:
Published in: | Proceedings of the Edinburgh Mathematical Society 2004-10, Vol.47 (3), p.533-552 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider Sturm–Liouville boundary-value problems on the interval $[0,1]$ of the form $-y''+qy=\lambda y$ with boundary conditions $y'(0)\sin\alpha=y(0)\cos\alpha$ and $y'(1)=(a\lambda+b)y(1)$, where $a\lt0$. We show that via multiple Crum–Darboux transformations, this boundary-value problem can be transformed ‘almost’ isospectrally to a boundary-value problem of the same form, but with the boundary condition at $x=1$ replaced by $y'(1)\sin\beta=y(1)\cos\beta$, for some $\beta$. AMS 2000 Mathematics subject classification: Primary 34B07; 47E05; 34L05 |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091504000197 |