Loading…
Minimum \(L^q\)-distance estimators for non-normalized parametric models
We propose and investigate a new estimation method for the parameters of models consisting of smooth density functions on the positive half axis. The procedure is based on a recently introduced characterization result for the respective probability distributions, and is to be classified as a minimum...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and investigate a new estimation method for the parameters of models consisting of smooth density functions on the positive half axis. The procedure is based on a recently introduced characterization result for the respective probability distributions, and is to be classified as a minimum distance estimator, incorporating as a distance function the \(L^q\)-norm. Throughout, we deal rigorously with issues of existence and measurability of these implicitly defined estimators. Moreover, we provide consistency results in a common asymptotic setting, and compare our new method with classical estimators for the exponential-, the Rayleigh-, and the Burr Type XII distribution in Monte Carlo simulation studies. We also assess the performance of different estimators for non-normalized models in the context of an exponential-polynomial family. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1909.00002 |