Loading…
Adversarial discriminative sim-to-real transfer of visuo-motor policies
Various approaches have been proposed to learn visuo-motor policies for real-world robotic applications. One solution is first learning in simulation then transferring to the real world. In the transfer, most existing approaches need real-world images with labels. However, the labeling process is of...
Saved in:
Published in: | The International journal of robotics research 2019-09, Vol.38 (10-11), p.1229-1245 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Various approaches have been proposed to learn visuo-motor policies for real-world robotic applications. One solution is first learning in simulation then transferring to the real world. In the transfer, most existing approaches need real-world images with labels. However, the labeling process is often expensive or even impractical in many robotic applications. In this article, we introduce an adversarial discriminative sim-to-real transfer approach to reduce the amount of labeled real data required. The effectiveness of the approach is demonstrated with modular networks in a table-top object-reaching task where a seven-degree-of-freedom arm is controlled in velocity mode to reach a blue cuboid in clutter through visual observations from a monocular RGB camera. The adversarial transfer approach reduced the labeled real data requirement by 50%. Policies can be transferred to real environments with only 93 labeled and 186 unlabeled real images. The transferred visuo-motor policies are robust to novel (not seen in training) objects in clutter and even a moving target, achieving a 97.8% success rate and 1.8 cm control accuracy. Datasets and code are openly available. |
---|---|
ISSN: | 0278-3649 1741-3176 |
DOI: | 10.1177/0278364919870227 |