Loading…

An Accurate Three-Dimensional FDTD(2,4) Method on Face-Centered Cubic Grids With Low Numerical Dispersion

In this letter, a three-dimensional finite-difference time-domain (FDTD) method that is second-order in time and fourth-order in space on a face-centered cubic (FCC) grid, termed as FCC-FDTD(2,4), is proposed to solve the time-domain Maxwell's equations. The proposed method shows a much lower n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE antennas and wireless propagation letters 2019-09, Vol.18 (9), p.1711-1715
Main Authors: Chen, Guangzhi, Yang, Shunchuan, Su, Donglin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this letter, a three-dimensional finite-difference time-domain (FDTD) method that is second-order in time and fourth-order in space on a face-centered cubic (FCC) grid, termed as FCC-FDTD(2,4), is proposed to solve the time-domain Maxwell's equations. The proposed method shows a much lower numerical dispersion error compared with the errors of other FDTD schemes, such as the FCC-FDTD(2,2) method, the FDTD(2,2) method, and the FDTD(2,4) method. This improvement in the numerical dispersion results from the FCC grid and the fourth-order scheme in space used in the proposed FCC-FDTD(2,4) method. Then, the Courant-Friedrichs-Lewy condition is given through spectral analysis, and an analytical numerical dispersion relation is obtained and comprehensively studied through numerical results with the FCC-FDTD(2,2) method, the FDTD(2,2) method, and the FDTD(2,4) method. Compared with the other three FDTD methods, the proposed method has much smaller numerical dispersion errors. Finally, the accuracy of the proposed method is further validated with other numerical examples.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2019.2926423