Loading…

Thermally induced denaturation and aggregation of BLG-A: effect of the Cu2+ and Zn2+ metal ions

There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation...

Full description

Saved in:
Bibliographic Details
Published in:European biophysics journal 2008-10, Vol.37 (8), p.1351-1360
Main Authors: Stirpe, A., Rizzuti, B., Pantusa, M., Bartucci, R., Sportelli, L., Guzzi, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of β-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations ≤0.13 mM, the thermogram shows an endothermic peak at 84.3°C, corresponding to denaturation; for concentrations >0.13 mM an exothermic peak also appears, above 90°C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu 2+ or Zn 2+ ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10°C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-008-0346-4