Loading…

Detecting acetyl-coenzyme a carboxylase resistance gene in rice (Oryza sativa L.)

Herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) are very effective in controlling grass weeds including weedy-rice in paddy rice production systems. The ACCase inhibitor affects the enzyme by blocking fatty acid biosynthesis resulting in plant death. The herbicide resistance in rice is...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology reports 2019-12, Vol.46 (6), p.6271-6276
Main Authors: Pereira, Adriana, Tcacenco, Fernando Adami, Klabunde, Gustavo Henrique Ferrero, de Andrade, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) are very effective in controlling grass weeds including weedy-rice in paddy rice production systems. The ACCase inhibitor affects the enzyme by blocking fatty acid biosynthesis resulting in plant death. The herbicide resistance in rice is conferred by a single point mutation with an amino acid substitution of the carboxyl transferase domain of the ACCase gene. An assay based on the tetra-primer ARMS-PCR method was developed to detect the SNP G2027T that causes a tryptophan–cysteine substitution in the gene encoding chloroplastic ACCase in rice. The protocol was tested in 453 rice samples from a segregant population for validation of the assay. This technique can be exploited to monitor resistant lines in rice breeding programs to detect homozygous or heterozygous resistant genotypes and homozygous susceptible genotypes. The presence of resistant ACCase allele(s) can be detected with rapidity, simplicity, at low cost and can be used in any molecular biology laboratory with minimal equipment.
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-019-05068-z